
1 Overview
i.MX Android™ release includes support for Wi-Fi Display
(WFD) Sink, which allows a device to act as Wi-Fi Display
Sink and render the audio and video content from Wi-Fi
Source Device. The application framework provides access to
the Wi-Fi Display Sink functionality through the i.MX
Android Wi-Fi Display Sink APIs. These APIs let applications
configure the device as a Wi-Fi Display Sink device, which
can be connected with Wi-Fi Display Source, and render the
Real-Time Streaming Protocol (RTSP) streaming from Wi-Fi
Display Source.

Using the i.MX Android Wi-Fi Display Sink APIs, an Android
application can perform the following:

• Scan for other Wi-Fi Display Source devices.
• Get self peer name and MAC address.
• Set the device name that is displayed in other Wi-Fi

Display devices.
• Set the display surface to render the RTSP streaming

from the Wi-Fi Display Source Device.
• Start or stop the RTSP streaming between Wi-Fi Display

Source and Sink.
• Disconnect Wi-Fi display connection from Peer to Peer

(P2P) layer.
• Send the input event to the Wi-Fi Display Source

device, which known as User Input Back Channel
(UIBC).

NXP Semiconductors Document Number: WFDSINKAPIUG

User's Guide Rev. 0, 07/2016

i.MX Android™ Wi-Fi Display Sink
API User's Guide

Contents

1 Overview..1

2 Requirements...2

3 API Description............................2

4 Examples............................... 7

2 Requirements
• i.MX Android M6.0.1_2.1.0 release
• Murata TypeZP Ver2.0 module based on Broadcom BCM4339

3 API Description
Below is a description of the i.MX Android WFD Sink API.

3.1 Package com.fsl.wfd

3.1.1 com.fsl.wfd.WfdSink
Description

This class encapsulates the basic operation of the WFD Sink device.

Methods

Table 1. com.fsl.wfd.WfdSink methods

Method Description Parameter

void startSearch() This function is used to launch Wi-Fi P2P scanning.
After the function is called, Wi-Fi P2P peer discovery
starts. When Wi-Fi P2P peers are discovered, it delivers
the peers' information.

-

void setDeviceName(String
name)

This function is used to set the Wi-Fi P2P device name.
This function is called when the device needs to be
renamed.

name: the name used to identify a
Wi-Fi display device.

String getDeviceName() This function is used to get the device name. You can
display the self name in your UI and the source device
gets it from the searched results.

-

String
getDeviceMacAddress()

This function is used to get the device MAC address.
You can display the MAC address in your UI.

-

void stopSearch() This function is used to stop the Wi-Fi P2P scanning
peers. This function is called after the Wi-Fi P2P
connection is disconnected and the WFD Sink function
needs to be quit.

-

void stopActive() This function is used to stop Wi-Fi P2P connection. Call
it to disconnect the P2P connection through the lower
network layer.

-

void startRtsp(Surface
surface)

This function is used to start the RTSP streaming when
the Wi-Fi P2P network is connected.

surface: it represents the display
area.

Table continues on the next page...

Requirements

i.MX Android™ Wi-Fi Display Sink API User's Guide, Rev. 0, 07/2016

2 NXP Semiconductors

Table 1. com.fsl.wfd.WfdSink methods (continued)

Method Description Parameter

void sendKeyEvent(int
KeyCode, KeyEvent event)

This function is used to send the key event through
UIBC. If Sink and Source negotiate to support the
UIBC, call this interface to send the key event. You can
get this event from the key action listener of the activity.

-

void
sendTouchEvent(MotionEvent
event)

This function is used to send the touch event through
the UIBC. If sink and source negotiate to support UIBC,
call this interface to send the touch event. You can get
this event from the activity view.

-

void setMiracastMode(int
mode)

This function is used to set the role of the WifiDisplay.
Set WifiP2pManager.MIRACAST_SINK in p2p_search
stage to enable the target source device to find the sink
device. Set WifiP2pManager.MIRACAST_DISABLED
when the connection tears down and WiFiDisplaySink
Activity stops. This enables the Android Wi-Fi Display
Source feature in the i.MX to be restored to the
available status.

mode:
• WifiP2pManager.MIRACAST_

SINK: This is a standalone
connection, which is not
disturbed by another P2P
device.

• WifiP2pManager.MIRACAST_
DISABLED: The P2P
connection is normal.

void
sendScrollEvent(MotionEvent
event)

The MotionEvent of the mouse wheel from the
onGenericMotionEvent(MotionEvent) can be sent
through this API.

-

String getWfdSinkVersion() This function returns the WfdSink API version. -

void
addRtspStateObserver(RtspS
tateObserver observer)

This function adds RtspStateObserver to WfdSink.
These observers provide eight callbacks with RTSP
state change (4 state: start, stop, pause, resume). It is
already thread-safely.

observer - Different
WifiStateObserver added to
WfdSink

void
addWifiStateObserver(WifiSta
teObserver observer)

This function adds WifiStateOberser to WfdSink. These
observers provide four callbacks with the WIF state
change. It is already thread-safe.

observer - Different
WifiStateObserver added to
WfdSink

void
removeRtspStateObserver(Rt
spStateObserver observer)

This function removes WifiStateOberser from WfdSink.
It is already thread-safe.

observer - RtspStateObserver
removed from WfdSink. It should be
already added with the WfdSink.

void
removerWifiStateObserver(Wi
fiStateObserver observer)

This function removes WifiStateOberser from WfdSink.
It is already thread-safe.

observer - WifiStateObserver
removed from WfdSink. It should be
already added with the WfdSink.

Set<WifiP2pDevice>
getPairedDevices()

This function gets the Wi-Fi P2P devices, which are
paired with the Sink.

-

3.1.2 com.fsl.wfd.SinkView
Description

This class extends the SurfaceView. It is used to play the RTSP stream. The SinkView contains a WfdSink object and
encapsulates some operations of WfdSink, WifiStateObserver, and RtspStateObserver. It provides a helper class to develop a
widget and provide Wi-Fi Display Sink functions.

API Description

i.MX Android™ Wi-Fi Display Sink API User's Guide, Rev. 0, 07/2016

NXP Semiconductors 3

Methods

Table 2. com.fsl.wfd.SinkView methods

Method Description Parameter

protected void
onSinkViewDeviceConnect(bo
olean isConnect)

Callback of the Wi-Fi P2P state change. It is called if a
Wi-Fi P2P is connected or disconnected.

isConnect – Wi-Fi P2P connction
state

protected void
onSinkViewDeviceListChang
e(WifiP2pDevice[] devices)

Callback of the Wi-Fi P2P device change. It is called if a
new Wi-Fi P2P device is found.

devices - Array of Wi-Fi P2P device
found

protected void
onSinkViewDeviceUpdate()

Callback of the device information updating. -

protected void
onSinkViewRtspPauseBegin()

Callback of the RTSP pause beginning. Code can be
put here before RTSP pauses.

-

protected void
onSinkViewRtspPauseFinishe
d()

Callback of the RTSP pause finishing. Code can be put
here after RTSP pauses.

-

protected void
onSinkViewRtspResumeBegi
n()

Callback of the RTSP resume beginning. Code can be
put here before RTSP resumes.

-

protected void
onSinkViewRtspResumeFinis
hed()

Callback of the RTSP resume finishing. Code can be
put here after RTSP resumes.

-

protected void
onSinkViewRtspStartBegin()

Callback of the RTSP start finishing. Code can be put
here before RTSP starts.

-

protected void
onSinkViewRtspStartFinishe
d()

Callback of the RTSP start beginning. Code can be put
here after RTSP starts.

-

protected void
onSinkViewRtspStopBegin()

Callback of the RTSP stop beginning. Code can be put
here after RTSP stops.

-

protected void
onSinkViewRtspStopFinished(
)

Callback of the RTSP stop finishing. Code can be put
here after RTSP stops.

-

protected void
onSinkViewVideoSizeChang
e(int height, int width)

Callback of the WfdSink video size changing. It is called
if the RTSP size changes.

height - video size height

width – video size width

public void
setOnRtspListener(SinkView.
onRtspStateListener listener)

Set the rtspStateListener to get the callback of RSTP
start, stop, pause, resume state.

listener - onRtspStateListener in
SinkView, provides the callback

public void
setWfdSink(WfdSink wfdSink)

Set a wfdsink to SinkView. The wfdsink object should
not be null.

wfdsink - use this wfdsink to do
some Wi-Fi display operation

3.1.3 com.fsl.wfd.SinkActivityBase
Description

This class is used to wrap the basic operation of WFD Sink in an android.app.Activity. It contains a default WFD Sink object
and some callbacks. It provides a helper class to develop an activity and provide the Wi-Fi Display Sink functions.

API Description

i.MX Android™ Wi-Fi Display Sink API User's Guide, Rev. 0, 07/2016

4 NXP Semiconductors

Methods

Table 3. com.fsl.wfd.SinkActivityBase methods

Method Description Parameter

public WfdSink getWfdSink() Get the default WFD Sink object created by
SinkActivityBase.

-

protected void
handleDeviceChangeOnUiThr
ead(WifiP2pDevice[] devices)

Callback of the Wi-Fi P2P device change. This callback
runs on the UI thread.

devices - Array of Wi-Fi P2P device
found

protected void
handleDeviceUpdateOnUiThr
ead()

Callback of the current device change. This callback
runs on the UI thread.

-

protected void
handleRtspPauseBeginOnUiT
hread()

CallBack of the RTSP pause beginning. Code can be
put here before RTSP pauses. This callback runs on
the UI thread.

-

protected void
handleRtspPauseFinishedOn
UiThread()

CallBack of the RTSP pause finishing. Code can be put
here after RTSP pauses. This callback runs on the UI
thread.

-

protected void
handleRtspResumeBeginOnU
iThread()

CallBack of the RTSP resume beginning. Code can be
put here before RTSP resumes. This callback runs on
the UI thread.

-

protected void
handleRtspResumeFinishedO
nUiThread()

CallBack of the Rtsp resume finishing. Code can be put
here after Rtsp resumes. This callback runs on the UI
thread.

-

protected void
handleRtspStartFinishedOnUi
Thread()

CallBack of the RTSP start finishing. Code can be put
here after RTSP starts. This callback runs on the UI
thread.

-

protected void
handleRtspStoptBeginOnUiTh
read()

CallBack of the RTSP stop beginning. Code can be put
here before RTSP stops. This callback runs on the UI
thread.

-

protected void
handleRtspStoptFinishedOnUi
Thread()

CallBack of the RTSP stop finishing. Code can be put
here after RTSP stops. This callback runs on the UI
thread.

-

protected void
handleSinkConnectOnUiThre
ad(boolean connected)

Callback of the WifiP2p connect state. This callback
runs on the UI thread.

isConnect – Wi-Fi P2P connect
state.

• true: connect
• false: disconnect

protected void
handleSinkVideoSizeChange
OnUiThread(int height, int
width)

Callback of the WfdSink video size change. This
callback runs on the UI thread.

height - video size height

width - video size width

protected void
handlRtspStartBeginOnUiThr
ead()

CallBack of the RTSP start beginning. Code can be put
here before RTSP starts. This callback runs on the UI
thread.

-

protected abstract void
initView()

initializes the root view and this method should be
complete in sub class.

-

protected void onExit() Callback of exit. -

protected void
onStartSearch()

Callback of searching for Wi-Fi P2P devices.

Application can update the UI about searching status in
this Callback.

-

Table continues on the next page...

API Description

i.MX Android™ Wi-Fi Display Sink API User's Guide, Rev. 0, 07/2016

NXP Semiconductors 5

Table 3. com.fsl.wfd.SinkActivityBase methods (continued)

Method Description Parameter

protected abstract void
onWifiDisabled()

Callback of Wi-Fi disabled. Something should be done
to open the Wi-Fi before Wi-Fi P2P sink.

-

protected abstract void
onWifiEnabled()

Callback of Wi-Fi enabled. startSearch for Wi-Fi P2P
devices can be done here.

-

protected void startSearch() Start searching for Wi-Fi P2P devices. This API needs
to be called actively.

-

protected void stopSearch() Stop searching for Wi-Fi P2P devices. This API needs
to be called actively.

-

3.2 Package com.fsl.wfd.observer

3.2.1 com.fsl.wfd.observer.WfdObserver
Description

This class is the base of the Wi-Fi state observer and the RTSP state observer.

Methods

Table 4. com.fsl.wfd.observer.WfdObserver methods

Method Description Parameter

WfdObserver(java.lang.String
observerName)

Constructor observerName - observer name

String getName() Gets the observer name. -

3.2.2 com.fsl.wfd.observer.RtspStateObserver
Description

This class provides the callbacks for the RTSP state change. WfdSink provides the interface addRtspStateObserver() to
register this callback and removeRtspStateObserver() to unregister this callback.

Methods

Table 5. com.fsl.wfd.observer.RtspStateObserver methods

Method Description Parameter

RtspStateObserver(java.lang.
String observerName)

Constructor observerName - observer name

abstract void
onRtspStartBegin()

Callback of the RTSP start beginning. Code can be put
here before RTSP starts.

-

Table continues on the next page...

API Description

i.MX Android™ Wi-Fi Display Sink API User's Guide, Rev. 0, 07/2016

6 NXP Semiconductors

Table 5. com.fsl.wfd.observer.RtspStateObserver methods (continued)

Method Description Parameter

abstract void
onRtspStartFinished()

Callback of the RTSP start finishing. Code can be put
here after RTSP starts.

-

abstract void
onRtspStopBegin()

Callback of the RTSP stop beginning. -

abstract void
onRtspStopFinished()

Callback of the RTSP stop finishing. Code can be put
here after RTSP stops.

-

abstract void
onRtspPauseBegin()

Callback of the RTSP pause beginning. Code can be
put here before RTSP pauses.

-

abstract void
onRtspPauseFinished()

Callback of the Rtsp pause finishing. Code can be put
here after RTSP pauses.

-

abstract void
onRtspResumeBegin()

Callback of the RTSP resume beginning. Code can be
put here before RTSP resumes.

-

abstract void
onRtspResumeFinished()

Callback of the RTSP resume finishing. Code can be
put here after RTSP resumes.

-

3.2.3 com.fsl.wfd.observer.WifiStateObserver
Description

This class provides 4 callbacks for Wi-Fi state change. WFD Sink provides the interface – addWifiStateObserver() to register
this callback and removeWififStateObserver() to unregister this callback.

Methods

Table 6. com.fsl.wfd.observer.WifiStateObserver methods

Method Description Parameter

WifiStateObserver(java.lang.S
tring observerName)

Constructor observerName - observer name

abstract void
onDeviceListChange(WifiP2p
Device[] devices)

Callback of Wi-Fi P2P device Change. After starting
searching the Wi-Fi P2P device, call the callback when
the Wi-Fi P2P device is found.

devices - Array of Wi-Fi P2P device
found

abstract void
onDeviceConnect(boolean
isConnect)

Callback of Wi-Fi P2P connect State. This callback is
called when the Wi-Fi P2P device is connected.

isConnect - WIFI P2P connect state,
true is connect, false is disconnect.

abstract void
onDeviceUpdate()

Callback of current device change. -

abstract void
onSinkVideoSizeChange(int
height, int weight)

Callback of WfdSink video size change. height - video size height

weight – video size width

4 Examples
A demo application is provided in myandroid/device/wfd-proprietary/WfdSinkApp to show how to use the WFD Sink APIs.

Examples

i.MX Android™ Wi-Fi Display Sink API User's Guide, Rev. 0, 07/2016

NXP Semiconductors 7

When writing Android.mk, add these two variables:

• Include fsl.imx as static Java library.
• Disable the ProGuard function.

LOCAL_STATIC_JAVA_LIBRARIES := fsl.imx
LOCAL_PROGUARD_ENABLED := disabled

4.1 Registering the callbacks
This example shows how to register the callbacks.

mWfdSink = new WfdSink(this);
mWifiStateObserver = new SinkActivityWifiStateObserver(TAG);
mRtspStateObserver = new SinkActivityRtspStateObserver(TAG);
mPWfdSink.addWifiStateObserver(mWifiStateObserver);
mPWfdSink.addRtspStateObserver(mRtspStateObserver);

......
//Two observers should be implemented.
class SinkActivityWifiStateObserver extends WifiStateObserver {
 public SinkActivityWifiStateObserver(String observerName){
 super(observerName);
 }

 @Override
 public void onDeviceListChange(final WifiP2pDevice[] devices) {

 }

 @Override
 public void onDeviceConnect(final boolean isConnect){

 }

 @Override
 public void onSinkVideoSizeChange(final int height, final int width){

 }

 @Override
 public void onDeviceUpdate(){

 }
}
class SinkActivityRtspStateObserver extends RtspStateObserver {
 public SinkActivityRtspStateObserver(String observerName){
 super(observerName);
 }

 @Override
 public void onRtspStartBegin(){
 }
}

4.2 Enabling discoverability
Call the API startSearch() to start scanning Wi-Fi display source devices.

Examples

i.MX Android™ Wi-Fi Display Sink API User's Guide, Rev. 0, 07/2016

8 NXP Semiconductors

4.3 Connecting devices
The Wi-Fi P2P network broadcast is received. The Wi-Fi P2P source device list can be obtained when
WFD_DEVICE_LIST_CHANGED_ACTION is received. Call the callback onDeviceConnect() of WifiStateObserver. Then,
call the startRtsp() and stopRtsp() methods of WFD Sink.

To ensure that the P2P Stack is exclusively used by the Wi-Fi Display Sink Application, use setMiracastMode to set the role
of WifiDisplay.

To manage the Wi-Fi P2P network connection state, execute the following commands:

private handleConnection(boolean connected) {
 if (connected) {
 mWfdSink.startRtsp(mSurfaceHolder.getSurface());
 mWfdSink.setMiracastMode(WifiP2pManager.MIRACAST_SINK);
 }
 else {
 mWfdSink.stopActive();
 mWfdSink.setMiracastMode(WifiP2pManager.MIRACAST_DISABLED);
 }
}

4.4 Stopping Wi-Fi Display Sink
The following is the example to stop Wi-Fi Display Sink:

mWfdSink.setMiracastMode(WifiP2pManager.MIRACAST_DISABLED);
mWfdSink.stopActive();

NOTE
The default Android WFD Source requires the RTSP streaming to start within 15 seconds
after the Wi-Fi P2P connection is built.

4.5 How to use sendKeyEvent, sendScrollEvent, and
sendTouchEvent

The APIs sendKeyEvent , sendScrollEvent, and sendTouchEvent, have one event parameter. These events can be captured by
Android input event-related APIs. The following are the examples to capture the Key and Motion event and send them to Wi-
Fi Display Source through the Wi-Fi Display Sink APIs:

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if(keyCode == KeyEvent.KEYCODE_BACK) {
 mHandler.removeMessages(SET_UI_FLAG_HIDE_NAVIGATION);
 this.exitDialog();
 } else if (keyCode == KeyEvent.KEYCODE_VOLUME_DOWN
 || keyCode == KeyEvent.KEYCODE_VOLUME_UP) {
 mWfdSink.sendKeyEvent(keyCode, event);
 return true;
 }
 return super.onKeyDown(keyCode, event);
 }

 mSurfaceView = (SinkView)findViewById(R.id.sink_preview);
 SurfaceHolder holder = mSurfaceView.getHolder();
 holder.addCallback(this);

Examples

i.MX Android™ Wi-Fi Display Sink API User's Guide, Rev. 0, 07/2016

NXP Semiconductors 9

 holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 mSurfaceView.setOnTouchListener(new OnTouchListener() {
 @Override
 public boolean onTouch(View v, MotionEvent event) {
 Log.d(TAG, "sink view on touch event x=" + event.getX() + "y=" +
event.getY());
 mWfdSink.sendTouchEvent(event);
 return true;
 }
 });
 @Override
 public boolean onGenericMotionEvent(MotionEvent event) {
 if (event.isFromSource(InputDevice.SOURCE_MOUSE)) {
 switch (event.getAction()) {
 case MotionEvent.ACTION_SCROLL:
 mWfdSink.sendScrollEvent(event);
 break;
 case MotionEvent.ACTION_HOVER_MOVE:
 mWfdSink.sendTouchEvent(event);
 Log.i(TAG,"sendrolon GenerMotionEvent HoverMoved." +
event.toString());
 break;
 }
 }
 return super.onGenericMotionEvent(event);
 }

4.6 How to use SinkView to display
SinkView is based on SurfaceView. It is used to play the RTSP stream in the surface automatically. It simplifes the
developping work by wrapping the related operation of Wi-Fi Display Sink. Developers still can write a view based on
SurfaceView to implement the Wi-Fi Display Sink. The following examples show how to use it.

To initialize SinkView:

SinkView sinkView = new SinkView(context);

or

SinkView sinkView = (SinkView) findViewbyId(R.id.sinkView);

To set WFD Sink to SinkView.

sinkView.setWfdSink(wfdSink);

To add an RTSP state listener:

sinkView.setOnRtspListener(new SinkView.onRtspStateListener{…});

There are two ways to get the RTSP state callback of SinkView:
• Extend the SinkView and then override the onSinkViewRtspStopBegin() and other seven callbacks.
• Set a listener as an onclick listener. This way is more convenient than the previous one.

4.7 How to use SinkActivityBase
SinkActivity provides a basic activiy that wraps two WFD Observers. It helps develop an activity, which implements the Wi-
Fi Display Sink. The following example shows how to use it.

public class MyWfdSinkActivity extends SinkActivityBase{

 @Override

Examples

i.MX Android™ Wi-Fi Display Sink API User's Guide, Rev. 0, 07/2016

10 NXP Semiconductors

 protected void initView() {
 //init the UI widgets here.
 //getWfdSink or new WfdSink and register the wfdsink to the sinkView
 //Ensure that the WfdSink in Actvity and SinkView is same.
 mWfdSink = getWfdSink();
 mSurfaceView = (SinkView)findViewById(R.id.sink_preview);
 mSurfaceView.setWfdSink(mWfdSink);
 }

 //Wifi Sink need wifi open, if the wifi opened, the activity will call this method
 //else onWifiDisabled() will be called.
 @Override
 protected void onWifiEnabled() {
 if(!isExit)
 startSearch();
 }

 //Stop the WIFI P2P device search and handle wifi p2p connection
 @Override
 protected void handleSinkConnectOnUiThread(boolean connected) {
 super.handleSinkConnectOnUiThread(connected);
 stopSearch();
 handleConnected(connected)
 }

 //handle RTSP state
 @Override
 protected void handlRtspStartBeginOnUiThread() {
 super.handlRtspStartBeginOnUiThread();
 }

 //handle WIFI P2P state
 @Override
 protected void handleSinkConnectOnUiThread(boolean connected){
 super.handleSinkConnectOnUiThread();
 }
}

4.8 Revision History
Table 7. Revision history

Revision number Date Substantive changes

0 07/2016 Initial release

Examples

i.MX Android™ Wi-Fi Display Sink API User's Guide, Rev. 0, 07/2016

NXP Semiconductors 11

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: nxp.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their

respective owners. All rights reserved.

© 2016 Freescale Semiconductor, Inc.

Document Number: WFDSINKAPIUG
Rev. 0

07/2016

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Overview
	Requirements
	API Description
	Package com.fsl.wfd
	com.fsl.wfd.WfdSink
	com.fsl.wfd.SinkView
	com.fsl.wfd.SinkActivityBase

	Package com.fsl.wfd.observer
	com.fsl.wfd.observer.WfdObserver
	com.fsl.wfd.observer.RtspStateObserver
	com.fsl.wfd.observer.WifiStateObserver

	Examples
	Registering the callbacks
	Enabling discoverability
	Connecting devices
	Stopping Wi-Fi Display Sink
	How to use sendKeyEvent, sendScrollEvent, and sendTouchEvent
	How to use SinkView to display
	How to use SinkActivityBase
	Revision History

