DaisyPlus Device Test Guide

Revision 1.2 2021. 07. 21

CRZ Technology

Document History

Revision	Date	Change note
1.0	2021.04.19	Initial Version
1.1	2021.05.31	Changed MIG test
1.2	2021.07.21	Updated due to new LPDDR4

Index

1.	Overviev	N	
2.	Test Setu		5
3.	NVMe N	1.2	6
4.	DDR4 DI	IMM	10
5.	PCle x16	6 Endpoint	12
	5.1.	PCIe Host BIOS Setup	12
	5.2.	Verifying the PCIe link	12
	5.3.	XDMA test	13
6.	QSFP28	- 100GB Ethernet	15

1. Overview

This document explains how to test the devices(NVMe M.2, DDR4 DIMM, PCIe x16 endpoint, QSFP28) mounted on DaisyPlus.

2. Test Setup

Set mode select dip switch[SW1] to [JTAG / QSPI / SD] mode accordingly.

MODE	Switch							
WODE	[4]	[3]	[2]	[1]				
JTAG	LOW[ON]	LOW[ON]	LOW[ON]	LOW[ON]				
QSPI 32	LOW[ON]	LOW[ON]	HIGH[OFF]	LOW[ON]				
SD1	HIGH[OFF]	HIGH[OFF]	HIGH[OFF]	LOW[ON]				

DaisyPlus Device Test Guide

3. NVMe M.2

Samsung SM963 NVMe M.2 SSD 480GB MLC has been verified on DaisyPlus.

Insert NVMe M.2 SSD to CR-DAISY-M2EXP1-REV2.1 board.

Connect CR-DAISY-M2EXP1-REV2.1 board to DaisyPlus through J25.

Create bootable image for SD boot or QSPI boot by referring to <u>DaisyPlus Petalinux Porting</u> Guide document.

Check if LED2 or LED3 is turned on during boot. LED2 or LED3 is on if PCIe link is correctly configured.

Verify PCIe link after logging in linux.

root@daisyplus:~# lspci	
0000:00:00.0 PCI bridge: Xilinx Corporation Device 9134	
0000:01:00.0 Non-Volatile memory controller: Intel Corporation Device 2522	
0001:00:00.0 PCI bridge: Xilinx Corporation Device 9134	
0001:01:00.0 Non-Volatile memory controller: Samsung Electronics Co Ltd NVM	e SSD
Controller SM961/PM961	

root@daisyp.	lus:~# ls	sblk	C			
NAME	MAJ:MIN	RM	SIZE	RO	TYPE	MOUNTPOINT
mtdblock0	31:0	0	36M	0	disk	
mtdblock1	31:1	0	1M	0	disk	
mtdblock2	31:2	0	68M	0	disk	
mtdblock3	31:3	0	11M	0	disk	
mmcb1k0	179:0	0	14.9G	0	disk	
-mmcblk0p1	179:1	0	1G	0	part	/run/media/mmcblk0p1
`-mmcblk0p2	179:2	0	6.5G	0	part	/
nvme0n1	259:0	0	54.9G	0	disk	
`-nvme0n1p1	259:3	0	54.9G	0	part	/run/media/nvme0n1p1
nvme1n1	259:1	0	447.1G	0	disk	
`-nvme1n1p1	259:2	0	447.1G	0	part	/run/media/nvme1n1p1
rootAdaisyn	1115.~#					

Check if NVMe SSD is configured as block device.

Create disk partition.

root@daisy:~# fdisk /dev/nvme0n1 Welcome to fdisk (util-linux 2.32.1). Changes will remain in memory only, until you decide to write them. Be careful before using the write command. Device does not contain a recognized partition table. Created a new DOS disklabel with disk identifier 0xcb728903. Command (m for help): n Partition type p primary (0 primary, 0 extended, 4 free)
e extended (container for logical partitions) Select (default p): p Partition number (1-4, default 1): First sector (2048-937703087, default 2048): Last sector, +sectors or +size{K,M,G,T,P} (2048-937703087, default 937703087): Created a new partition 1 of type 'Linux' and of size 447.1 GiB. Command (m for help): w The partition table has been altered. Calling ioctl() to re-read partition table. [1883.709806] nvme0n1: p1 Syncing disks.

root@daisy:~#

root@daisy:~# lsblk									
NAME	MAJ:MIN	RM	SIZE	RO	TYPE	MOUNTPOINT			
mtdblock0	31:0	0	36M	0	disk				
mtdblock1	31:1	0	1M	0	disk				
mtdblock2	31:2	0	68M	0	disk				
mtdblock3	31:3	0	11M	0	disk				
mmcblk0	179:0	0	14.9G	0	disk				
-mmcblk0p1	179:1	0	1G	0	part	/run/media/mmcblk0p1			
`-mmcblk0p2	179:2	0	6.5G	0	part	/run/media/mmcblk0p2			
nvme0n1	259:0	0	447.1G	0	disk				
`-nvme0n1p1	259:1	0	447.1G	0	part				
root@daisy:	~#								

Check new partition name.

Make file system on new partition.

Create a directory and mount SSD to the directory.

```
root@daisy:~# mkdir /media/nvme
root@daisy:~# mount /dev/nvme0n1p1 /media/nvme
root@daisy:~# cd /media/nvme
root@daisy:/media/nvme# vi test.txt
```

Create a test file and check if the file is preserved during power cycling.

DaisyPlus Device Test Guide

4. DDR4 DIMM

DDR4 32GB x4 MTA36ASF4G72PZ-2G3B1MG has been verified on DisyPlus.

Connect two 32GB x4 DDR4_ MTA36ASF4G72PZ-2G3B1MG RDIMM to J8 and J9.

Due to MIG with dual slot configuration, two same DIMMs must be inserted.

Set SW1 to JTAG mode. Connect USB cable with host PC. Connect 12V DC power adaptor. Turn on board power by sliding power switch.

Open Vivado project which is included in <u>DaisyPlus Petalinux Porting Guide</u> document. Vivado version 2019.1 should be used.

In the Address Editor tab, two 32GB RDIMMs are mapped to 0x100000000.

Diagram × Address Editor × ?								
Q 素 ♠								
Cell	Slave Interface	Base Name	Offset Address	Range	High Address			
> 🌻 xdma_0								
> 👎 xdma_1								
✓ ♥ zynq_ultra_ps_e_0								
Mata (40 address bits : 0x00A0000000 [256M] ,0x0400000000 [4G]	,0x100000000 [224G	,0x00B0000000 [256M] ,0x05	00000000 [4G] ,0x48000000	00 [224G])				
···· axi_gpio_0	S_AXI	Reg	0x00_A800_0000	4K •	0x00_A800_OFFF			
···· axi_gpio_1	S_AXI	Reg	0x00_A800_1000	4K •	0x00_A800_1FFF			
ddr4_0	C0_DDR4_S_AXI	C0_DDR4_ADDRESS_BLOCK	0x10_0000_0000	64G 🔹	0x1F_FFFF_FFFF			
∞ ddr4_0	C0_DDR4_S_AXI_CTRL	C0_REG	0×00_A800_2000	4K *	0x00_A800_2FFF			

Select "Open Hardware Manager" under "PROGRAM AND DEBUG" in "Flow Navigator". Click "Program device".

Verify if LED0 is turned on after FPGA is programmed. LED must be turned on if MIG calibration is done correctly. Run serial terminal to view debug log.

Lauch SDK through "File" -> "Launch SDK" to check if RDIMM can be accessed.

Select "Run" -> "Debug History" -> "System Debugger on Local" on SDK menu.

Verify if LED0 is turned on after FPGA is programmed.

Click Cortex-A53 #0 and press "F8" to execute the program.

Check if memory test passes.

5. PCIe x16 Endpoint

During the test, set the Mode Select DIP Switch[SW1] to JTAG mode.

5.1. PCIe Host BIOS Setup

PCIe slot must be enabled in PCIe Host BIOS setup.

The host used for verification is HP PRODESK, and the PCIe slot must be activated in the BIOS as shown below.

	Main Security
+	System Options
	Configure Storage Controller for Inte
	Turbo-boost
and the second	Whyperthreading 🚱
	Multi-processor
	Virtualization Technology (VTx)
	Virtualization Technology for Directed
	PCI Express x16 Slot 1 🚱
	PCI Express x1 Slot 1 🚱
	PCI Express x4 Slot 1 😨
	M.2 WLAN/BT
	Allow PCIe/PCI SERR# Interrupt
	Power Button Override

5.2. Verifying the PCIe link

After attaching the PCIe extension cable to the DaisyPlus board, plug it into the PCIe x16 slot of PRODESK (it is the top black slot among the three PCIe slots). Apply 12V power to the board. Open Vivado project which is included in <u>DaisyPlus Petalinux Porting Guide</u> document and download the bitstream.

Vivado 2019.1 version must be used.

Power on PRODESK and log in to Linux.

At this time, check if LED1 of the board is on.

After logging in to Host Linux, run the command below from the command line to check if the link is established.

xilinx@xilinx-HP-ProDesk-400-G4-MT: ~	
File Edit View Search Terminal Help	
xilinx@xilinx-HP-ProDesk-400-G4-MT:~\$ lspci -vvv -s 01:00.0 01:00.0 Serial controller: Xilinx Corporation Device 903f (prog-if 01 [10 Subsystem: Xilinx Corporation Device 0007 Control: I/O- Mem+ BusMaster- SpecCycle- MemWINV- VGASnoop- Pare	5450]) rr- Step
ping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- < ⁻	TAbort-
<mabort->SERR- <perr- intx-<br="">Interrupt: pin A routed to IRQ 16 Region 0: Memory at f0100000 (32-bit, non-prefetchable) [size=64 Capabilities: <access denied=""></access></perr-></mabort->	<]
xilinx@xilinx-HP-ProDesk-400-G4-MT:~\$	

5.3. XDMA test

Access the following link and copy the necessary files to Ubuntu 16.04 Host.

https://github.com/Xilinx/dma_ip_drivers

Run the following command to build the XDMA driver kernel module and application program.

\$ cd XDMA/linux-kernel

\$ cd xdma

\$ make install

- \$ cd tools
- \$ make
- \$ cd tests

Load the XDMA kernel module.

\$ sudo ./load_driver.sh

Test whether XDMA is operating normally. \$./run_test.sh

xilinx@xilinx:~/Downloads/dma_ip_drivers-master/XDMA/linux-kernel/tests\$ sudo ./ run test.sh Info: Number of enabled h2c channels = 1 Info: Number of enabled c2h channels = 1 Info: The PCIe DMA core is memory mapped. Info: Running PCIe DMA memory mapped write read test transfer size: 1024 transfer count: 1 Info: Writing to h2c channel 0 at address offset 0. Info: Wait for current transactions to complete. ** Average BW = 1024, 17.526144 Info: Writing to h2c channel 0 at address offset 1024. Info: Wait for current transactions to complete. ** Average BW = 1024, 11.151161 Info: Writing to h2c channel 0 at address offset 2048. Info: Wait for current transactions to complete. ** Average BW = 1024, 13.890962 Info: Writing to h2c channel 0 at address offset 3072. Info: Wait for current transactions to complete. ** Average BW = 1024, 16.115833 Info: Reading from c2h channel 0 at address offset 0. Info: Wait for the current transactions to complete. ** Average BW = 1024, 2.690623 Info: Reading from c2h channel 0 at address offset 1024. Info: Wait for the current transactions to complete. ** Average BW = 1024, 4.612342 Info: Reading from c2h channel 0 at address offset 2048. Info: Wait for the current transactions to complete. ** Average BW = 1024, 4.601089 Info: Reading from c2h channel 0 at address offset 3072. Info: Wait for the current transactions to complete. ** Average BW = 1024, 4.605227 Info: Checking data integrity. Info: Data check passed for address range 0 - 1024. Info: Data check passed for address range 1024 - 2048. Info: Data check passed for address range 2048 - 3072. Info: Data check passed for address range 3072 - 4096. Info: All PCIe DMA memory mapped tests passed. Info: All tests in run tests.sh passed. xilinx@xilinx:~/Downloads/dma_ip_drivers-master/XDMA/linux-kernel/tests\$

6. QSFP28 - 100GB Ethernet

There are 2 HW versions per LPDDR4(U12). Check Micron marker code on U12. In case marker code is "80C47 D9TFW", <u>daisyplus_202001_20200721_image.tgz</u> must be used. In case marker code is "IDD77 D9ZZL", <u>daisyplus_202001_20210721_image.tgz</u> must be used.

Write <u>daisyplus_202001_20200721_image.tgz</u> / <u>daisyplus_202001_20210721_image.tgz</u> to the microSD card.

Boot two DaisyPlus boards with mciroSD card and connect the QSFP28#1 channels to each other with 100GB 1m copper cable.

Set ip and mtu size in eth1 on board 1.

```
root@daisy:~# ifconfig eth1 down
root@daisy:~# ifconfig eth1 mtu 8192
root@daisy:~# ifconfig eth1 192.168.2.1 up
```

```
Set ip and mtu size in eth1 on board 2.
```

```
root@daisy:~# ifconfig eth1 down
root@daisy:~# ifconfig eth1 mtu 8192
root@daisy:~# ifconfig eth1 192.168.2.2 up
```

On boards 1 and 2, ping to see if the other party's ip is connected.

```
root@daisy:~# ping 192.168.2.1
PING 192.168.2.1 (192.168.2.1): 56 data bytes
64 bytes from 192.168.2.1: seq=0 ttl=64 time=0.167 ms
64 bytes from 192.168.2.1: seq=1 ttl=64 time=0.079 ms
64 bytes from 192.168.2.1: seq=2 ttl=64 time=0.071 ms
64 bytes from 192.168.2.1: seq=3 ttl=64 time=0.067 ms
64 bytes from 192.168.2.1: seq=4 ttl=64 time=0.067 ms
64 bytes from 192.168.2.1: seq=5 ttl=64 time=0.188 ms
^C
--- 192.168.2.1 ping statistics ---
6 packets transmitted, 6 packets received, 0% packet loss
round-trip min/avg/max = 0.067/0.107/0.188 ms
root@daisy:~# []
```

root@daisy:~# ping 192.168.2.2 PING 192.168.2.2 (192.168.2.2): 56 data bytes 64 bytes from 192.168.2.2: seq=0 ttl=64 time=0.154 ms 64 bytes from 192.168.2.2: seq=1 ttl=64 time=0.205 ms 64 bytes from 192.168.2.2: seq=2 ttl=64 time=0.107 ms 64 bytes from 192.168.2.2: seq=3 ttl=64 time=0.148 ms ^C --- 192.168.2.2 ping statistics ---4 packets transmitted, 4 packets received, 0% packet loss round-trip min/avg/max = 0.107/0.153/0.205 ms root@daisy:~#

Set board 1 as an iperf client and board 2 as an iperf server to measure performance.

[354	1.731054] CMAC	goir	ng to reset							
I	354	1.734289] CMAC	RX a	lignment:	18						
Γ	354	1.737863] CMAC	leav	ving reset							
Co	Connecting to host 192.168.2.4, port 5201										
Γ	5]	local 192.168	.2.3	port 50502 con	nnected to 192.1	68.2.4	port	5201			
1	ID]	Interval		Transfer	Bitrate	Retr	Cwnd				
C	5]	0.00-1.00	sec	521 MBytes	4.37 Gbits/sec	0	366	KBytes			
I	5]	1.00-2.00	sec	521 MBytes	4.37 Gbits/sec	0	390	KBytes			
[5]	2.00-3.00	sec	521 MBytes	4.37 Gbits/sec	0	390	KBytes			
[5]	3.00-4.00	sec	521 MBytes	4.37 Gbits/sec	0	390	KBytes			
Γ	5]	4.00-5.00	sec	521 MBytes	4.37 Gbits/sec	0	413	KBytes			
E	5]	5.00-6.00	sec	521 MBytes	4.37 Gbits/sec	0	723	KBytes			
C	5]	6.00-7.00	sec	521 MBytes	4.37 Gbits/sec	0	723	KBytes			
I	5]	7.00-8.00	sec	520 MBytes	4.37 Gbits/sec	0	723	KBytes			
C	5]	8.00-9.00	sec	521 MBytes	4.37 Gbits/sec	0	723	KBytes			
Γ	5]	9.00-10.00	sec	521 MBytes	4.37 Gbits/sec	0	723	KBytes			
-											
I	ID]	Interval		Transfer	Bitrate	Retr					
I	5]	0.00-10.00	sec	5.09 GBytes	4.37 Gbits/sec	0		sender			
[5]	0.00-10.00	sec	5.09 GBytes	4.37 Gbits/sec			receiver			
iı	perf	Done.									

```
3564.067944] CMAC going to reset
 3564.071185] CMAC RX alignment ...:c0
3564.074766] CMAC leaving reset
Server listening on 5201
Accepted connection from 192.168.2.3, port 50500
  5] local 192.168.2.4 port 5201 connected to 192.168.2.3 port 50502
      Interval Transfer Bitrate
0.00-1.00 sec 521 MBytes 4.37 Gbits/sec
 ID] Interval
  5]
       1.00-2.00 sec 521 MBytes 4.37 Gbits/sec
  51
      2.00-3.00 sec 521 MBytes 4.37 Gbits/sec
      3.00-4.00 sec 522 MBytes 4.37 Gbits/sec
       4.00-5.00 sec 521 MBytes 4.37 Gbits/sec
       5.00-6.00 sec 521 MBytes
6.00-7.00 sec 521 MBytes
                                     4.37 Gbits/sec
                                      4.37 Gbits/sec
  5]
       7.00-8.00 sec 521 MBytes 4.37 Gbits/sec
      8.00-9.00 sec 521 MBytes 4.37 Gbits/sec
      9.00-10.00 sec 521 MBytes 4.37 Gbits/sec
     10.00-10.00 sec 393 KBytes 4.22 Gbits/sec
 ID] Interval
                        Transfer Bitrate
      0.00-10.00 sec 5.09 GBytes 4.37 Gbits/sec
                                                                       receiver
```

When measured by iperf, the performance of about 4.37Gbps was confirmed.