
Prof. Yong Ho Song

Department of Electronic Engineering, Hanyang University

3

Need a SSD platform

- to develop a new firmware algorithm

- to explore hardware architecture
and organization

Use a commercial product as a platform?

- little information on HW/SW

- no way to change controller SoC

4

Open source SSD design used for research and education

Host Interface Firmware

Flash Translation Layer

Low-Level Driver

NAND Flash
Controller

Bus / DMAC ARM Processor

Host Interface
Controller

ECC Engine
Performance

Monitor

SSD
Firmware

SSD
Controller
Hardware

■ Open-source SSD platforms

● Jasmine OpenSSD (2011)

● Cosmos OpenSSD (2014)

● Cosmos+ OpenSSD (2016)

■ Cosmos/Cosmos+ OpenSSD: FPGA-based platform

● Could modify SSD controller and firmware

● Could add new hardware and software functionality

6

■ Realistic research platform

● Solve your problem in a real system running host applications

● Design your own SSD controller (hardware and firmware), if possible

■ Information exchange

● Share your solution with people in society

■ Community contribution

● Open your own solution to public

■ Expensive custom-made storage system

● Unique

■ Play for fun

7

■ Jasmine OpenSSD (2011)

● SSD controller: Indilinx Barefoot (SoC w/SATA2)

● Firmware: SKKU VLDB Lab

● Users from 10+ countries

Barefoot
Controller

SoC

SATA-2
Interface

NAND Flash
Memory

(32GB/module)

8

■ Cosmos OpenSSD (2014)

● SSD controller: HYU Tiger 3 (FPGA w/PCIe Gen2)

● Firmware: HYU ENC Lab

● Users from 5 countries (mostly in USA)

SSD
Controller
in FPGA

External PCIe
Interface

NAND Flash Module
(128 GB)

9

■ Cosmos+ OpenSSD (2016)

● SSD controller: HYU Tiger 4 (FPGA w/NVMe over PCIe Gen2)

● Same main board with different memory modules

● Firmware: HYU ENC Lab

● Users from ?? countries

Same platform with
Cosmos OpenSSD

NAND Flash Modules
(1 TB/module)

10

Jasmine OpenSSD Cosmos OpenSSD Cosmos+ OpenSSD

Released in 2011 2014 2016

Main Board

SSD Controller Indilinx Barefoot (SoC) HYU Tiger3 (FPGA) HYU Tiger4 (FPGA)

Host Interface SATA2
PCIe Gen2 4-lane

(AHCI)

PCIe Gen2 8-lane

(NVMe)

Maximum Capacity 128 GB (32 GB/module) 256 GB (128 GB/module) 2 TB (1 TB/module)

NAND Data Interface SDR (Asynchronous) NVDDR (Synchronous) NVDDR2 (Toggle)

ECC Type and Strength BCH, 16 bits/512 B BCH, 32 bits/2 KB BCH, 26 bits/512 B

11

http://www.openssd.io

a

a

CPU
FTL & NVMe Management

12

Process

Information

Cosmos+ OpenSSD Host PC

USB
UART

USB
JTAG

USB
UART

USB
JTAG

UART Terminal
Communicate

with Cosmos+

Xilinx SDK 14.4
Build Firmware

Xilinx Vivado 14.4
Generate Bitstream

Development PC

Bitstream

& Firmware

Bitstream

& HW Information
NVMe

Controller

NAND

Flash

Controller
NAND

Flash

Module

NAND

Flash

Module

Application

File System

Zynq-7000 FPGA

Bitstream

Firmware

Processing System

Programmable Logic

E
x
t. P

C
Ie

C
o
n

n
e

c
to

r

E
x
t. P

C
Ie

A
d

a
p

to
r

PCIe Chipset

Block Layer

NVMe Driver

13

■ 1 Development PC

● Downloading hardware/software design (JTAG)

● Monitoring Cosmos+ OpenSSD internals (UART)

■ 1 Host PC

● Executing applications such as a benchmark (PCIe)

■ 1 Platform board with 1+ NAND flash modules installed

● Working as a storage device to the host PC

Development PC

Platform board

SSD Controller

NAND Flash

Module

Host PC

AVI

PDF

Hardware and software

binary files

Internal

information

NVMe over PCIe
UART

JTAG

MP3
NAND Flash

Module

14

■ Cosmos+ OpenSSD platform board

● Consists of a Zynq FPGA and other peripherals

■ NAND flash modules

● Configured as multi-channel and multi-way flash array

● Inserted into Cosmos+ OpenSSD platform board

■ External PCIe adapter and cable

● Connected with host PC

■ USB cables for JTAG and UART

● Connected with development PC

■ Power cable and adapter

● 12V supply voltage

15

External

PCIe

Ethernet

JTAG digilent

module

USB to UART

USB 2.0 ULTP

Zynq-7000

AP SoC

DDR3

DRAM

User-configurable SW

User-configurable LED
SD card

connector
QSPI memory

Configuration mode SW

SO-DIMM

SO-DIMM

6-pin PCIe

power connector

Board

power SW

PMbus

connector

SMA connector

Fan connector

JTAG select SW

20pin

JTAG

7&14pin

JTAG

User-configurable

GPIO pin

VCCO_ADJ

select pin

I2C PMOD

pin

VCCO_ADJ

divide pin

PMOD

pin
20pin

ARM JTAG

5.5 mm

power connector

16

FPGA Xilinx Zynq-7000 AP SoC (XC7Z045-FFG900-3)

Logic cells 350K (~ 5.2M ASIC gates)

CPU
Type Dual-Core ARM CortexTM- A9

Clock frequency Up to 1000 MHz

Storage
Total capacity Up to 2 TB (MLC)

Organization Up to 8-channel 8-way

DRAM
Device interface DDR3 1066

Total capacity 1 GB

Bus
System AXI-Lite (bus width: 32 bits)

Storage data AXI (bus width: 64 bits, burst length: 16)

SRAM 256 KB (FPGA internal)

17

■ Xilinx’s embedded SoC

■ Two regions

● Processing System (PS)

– Hardwired components

– Executes the firmware program

● Programmable Logic (PL)
– Programmable components

(FPGA region)

– NAND flash controller (NFC) and

NVMe controller reside in PL

■ Benefits of Using Zynq
● CPU is more faster than soft core

(such as MicroBlaze)

● No need to worry about

organizing hardware memory

controller, and some other

peripherals (such as UART)

● Xilinx supports BSP (Board

Support Package)

Central Interconnect

ARM Cortex-A9ARM Cortex-A9

Application Processor Unit

Snoop Control Unit

L2 Cache & Cache

Controller

OCM

Interconnect

GP AXI

Slave

ports

GP AXI

Master

ports

HP AXI Slave ports

Programmable

Logic to

Memory

Interconnect

Memory Interface

(DDR3 Controller)

Hardwired

component

Programmable

component

User Defined FPGA Logic

Processing

System

(PS)

Programmable

Logic (PL)

Peripherals

(UART, I2C, …)

Zynq-7000 architecture overview

18

■ Each module has 4 flash packages

● One flash package

– Capacity: 32 GB

– Page size: 8640 Bytes (spare area: 448 Bytes)

● Synchronous NAND

■ Used with Tiger3 Controller

Front side Rear side

Flash package

19

■ Module configuration

● 4 channels/module and 4 ways/channel

■ Shared signals within a channel (a package)

● Dies in the same package share the I/O channel

● Dies in the same package share command signals except Chip Enable (CE)

● Each die has own Ready/Busy (R/B) signal

Die 0

Die 1

Die 2

Die 3
Way3

Way2

Way1

Way0

CE0, R/B0

CE1, R/B1

CE2, R/B2

CE3, R/B3

Channel 3

Channel 2

Channel 1

Package 0 Channel 0

Package 1

Package 2

Package 3

20

■ Each module has 8 flash packages

● One flash package

– Capacity: 128 GB

– Page size: 18048 Bytes (spare area: 1664 Bytes)

● Toggle NAND

■ Used with Tiger4 Controller

Front side Rear side

Flash package Flash package

21

■ Module configuration

● 4-channels/module and 8-ways/channel

■ Shared signals within a channel (a package)

● Dies in the same package share the I/O channel

● Dies in the same package share command signals except Chip Enable (CE)

● Each die has own Ready/Busy (R/B) signal

Die 0

Die 1

Die 2

Die 3
Way7

Way6

Way5

Way4

CE4, R/B4

CE5, R/B5

CE6, R/B6

CE7, R/B7

Package 4

Package 5

Package 6

Package 7

Die 0

Die 1

Die 2

Die 3
Way3

Way2

Way1

Way0

CE0, R/B0

CE1, R/B1

CE2, R/B2

CE3, R/B3

Channel 3

Channel 2

Channel 1

Package 0 Channel 0
Package 1

Package 2

Package 3

22

■ Cosmos OpenSSD

● Supports only one flash module slot (J1)

■ Cosmos+ OpenSSD

● Supports both flash module slots (J1, J2)

SO-DIMM (J2) SO-DIMM (J1)

■ Caution

● Cosmos/Cosmos+ OpenSSD flash module slots have custom pin maps

● You should not insert any SDRAM module into this slot

23

■ Expand PCIe Slot of host PC to connect external device

■ Adapter card

● Installed on host PC

● Provide a high-performance and low latency solution for expanding PCIe

■ External PCIe cable (8-lane)

■ External PCIe connector (8-lane) on platform board

● 2.5 GT/s for a Gen1, 5.0 GT/s for a Gen2

● Connected with high data rate serial transceiver in FPGA

External PCIe adapter External PCIe cable

24

■ JTAG cable

● Used for downloading hardware and software binary files

● Available cable types

– USB type A to USB type micro B cable

– Emulator, JTAG N pin cable (N: 7, 14, 20)

■ UART cable

● Used for monitoring internal processes of Cosmos+ OpenSSD

● USB type A to USB type A cable

USB type AUSB type A
USB type micro B

USB emulator

USB cable for

emulator

7pin cable

14 or 20pin

cable
Available JTAG cables UART cable

25

■ Single-source of power to the platform board

● 6-pin power connector (J181) or 5.5mm X 2.1mm DC power plug (J182)

■ The 6-pin connector looks similar to the regular PC 6-pin PCIe connector
Note: Difference in pin assignment between two connectors

■ Caution

● Do not plug PC 6-pin PCIe power cable in platform board 6-pin power connector (J181)

Connector
Pin map

1 2 3 4 5 6

Platform board 6-pin power 12V 12V NC NC GND GND

PC 6-pin PCIe power GND GND GND 12V 12V 12V

6-pin power
5.5mm X 2.1mm DC power

or

26

■ Xilinx Vivado

● Generates a FPGA bitstream

● Exports the generated FPGA bitstream to Xilinx SDK

■ Xilinx SDK

● Builds a SSD controller firmware

● Downloads a FPGA bitstream and a firmware to the Zynq FPGA

■ FPGA bitstream

● Used to configure the programmable logic side of Zynq FPGA

■ Firmware

● Manages the NAND flash array

● Handles NVMe commands

27

Board Support Package

Cosmos+ OpenSSD Firmware

Software Layer

Hardware Layer

ARM Processor,
Cache

NAND Flash
Controller

NVMe
Controller

Cosmos+ OpenSSD

Executable

BitstreamHard-wired

Device Driver

Block Layer

File System

Host Computer Operating System

Application

29

Generate Board

Support Package

(Library)

Compile & Link

Download to

FPGA

Source files (.c file)

Firmware

executable (.elf file)

Load .hdf File

into Xilinx SDK

Cosmos+

OpenSSD

Firmware

Download

Predefined

Project File

Generate

Bitstream

FPGA bitstream (.bit)

FPGA Bitstream Build Flow Firmware Build Flow

Project and IP

source files

Xilinx

Vivado

Xilinx

SDK

30

DDR3-1066

1 GB DRAM

DDR3

Memory

Controller

ARM

Cortex-A9

Dual-core

Central

Interconnect

FPGA to

Memory

Interconnect

Host

PC

Zynq Processing System

Zynq-7000 FPGA

(XC7Z045FFG900-3)

PCI Express

Gen2 8-Lane

Host Interface

32

64

32

64

64

32

32x4

32x4

32x4

32x4

NAND Flash Controller (NFC)

NAND

Die

NAND Flash Controller (NFC)

Command Path

Data Path
NAND

Die

Low-level

NAND Flash

Controller

(Phy)

Dispatcher

Command Path

Data Path Low-level

NAND Flash

Controller

(Phy)

Dispatcher

NVMe Controller

NVMe DMA Engine
Xilinx 7-Series

Integrated

Block for PCIe

x4

x4

NAND

Flash

Controller

NAND

Flash

Controller

31

GP AXI

ports

(master)

HP AXI ports

(slave)

NVMe Host Controller

NAND

Flash

Controller

NAND

Flash

Controller

■ General Purpose (GP) AXI4 Lite bus

● 32bits interface

● Used for control

● Operates @ 100MHz

■ High Performance (HP) AXI4 bus

● 64bits interface

● Used for Direct Memory Access (DMA)

● Operates @ 250 MHz

x4

x4

(Channel 0~3)

(Channel 4~7)

32

32

Bus Interface Bus Interface

Dispatcher

Low-level NAND Flash Controller (Phy)

Command Filter N

Command Filter 0

Request

Completion

Marker

BCH ECC Engine

Data Scrambler

Command path

Data path

Not present,

but possible

32

8

33

■ Commands and data streams are encapsulated or decapsulated

throughout modules in a layer

■ Users can insert or remove modules more easily

Bus Interface

BCH ECC

Engine

Data Scrambler

SCRB (ED (Page) + ED (Spare))

ED (Page) + ED (Spare)

Page + Spare

AXI4 (Page + Spare)

SCRB (x): Scrambled data

ED (x): BCH-encoded data

34

■ Data transfers throughout a layer from DRAM to NAND flash or

from NAND flash to DRAM are all pipelined

■ Page buffer is not required in channel controller

Request 0

Request 1

Request 2

Bus Data Transfer

BCH Encoding

Data Scrambling

Bus Data Transfer

BCH Encoding

Data Scrambling

Bus Data Transfer

BCH Encoding

Data Scrambling

Time

35

■ Hardware-level way scheduler of NFC in Cosmos OpenSSD is removed

■ FTL is now responsible for channel and way scheduling

■ This enables more flexible scheduling policy

NFC

Way Scheduler

FTL

Low Level Driver

Channel Scheduler

NFC

Command Queue

(FCFS)

FTL

Low Level Driver

Channel and Way

Scheduler

Way

Queue

Way

Queue

Way Scheduler

(Round Robin)

Way
Controller

Way
Controller

Multi-way Controller

NFC in Cosmos OpenSSD NFC in Cosmos+ OpenSSD

36

■ Key equation solver (KES) used more (≥50 %) of logic cells than

syndrome calculator and chien searcher

■ Shared-KES saves 40 % of logic cells used in a BCH ECC decoder

■ Short BCH code parallelization is applied for high utilization of

hardware resources

SC bundle

Shared-KES

CS bundle

SC bundle CS bundle

SC bundle CS bundle

SC bundle CS bundle

Channel #0

Channel #1

Channel #2

Channel #3

* (256 B x 2) bundle, (13 x 2) bit error correction, (8 bit x 2) parallel level

a

a

a

a

a

37

32

Bus Interface Bus Interface

PCIe Transceiver

Xilinx 7 Series PCI Express Core

AXI

Write

Channel

PCIe

DMA Engine

PCIe

Write

Channel

64

PCI Express

NVMe

CMD

Status

Checker

DMA

CMD

FIFO

NVMe

CMD

FIFO

AXI

Read

Channel

PCIe

Write

Channel

DMA

CMD

Status

Checker

128Command path

Data path

38

■ The NVMe host interface completes NVMe IO commands

automatically

■ The FTL does not need to be involved in the completion process

NVMe Host

Interface
NVMe Host

Interface

NVMe Storage

Device Firmware

NVMe Storage

Device Firmware

39

■ NVMe specification 1.1/1.2 compliant

● Up to 8 IO submission/completion queues - 256 entries each

● 512B and 4KB sector size

● Physical region page (PRP) data transfer mechanism

● Native device driver for Windows 8/8.1 and Linux kernel>=3.3

● OpenFabrics Alliance (OFA) NVMe driver for Windows 7 and later

NVMe Interface Performance (DRAM Disk)

Workload Read Write

Random 4KB 300K IOPS 300K IOPS

128KB 1.7 GB/s 1.7 GB/s

40

• Static mapping

• Channel/way interleaving

Pure page-level mapping (16 KB page)

• On-demand garbage collection

• Greedy selection of GC victims

Greedy garbage collection

• Predetermined priority between DMA commands and flash commands

• Out of order execution between commands accessing different flash dies

Priority-based scheduling

• Single plane flash commands

• DMA commands for data transfer between host system and SSD

Command Set

• Data transfer between host system and NAND flash memory via data buffer

• Eviction of LRU buffer entry

LRU data buffer management

41

Data buffer

searching

Push to command

queue

Yes

Address translation

Buffer hit?

Host command

fetching

Enough

free block?
Garbage collection

FTL initializing

No

No

Yes

Valid CMD?

DMA command

Command

scheduling & issue
Is command

queue full?

Flash command

Yes

No

No

Yes

42

■ Buffer entry eviction

● LRU buffer entry is evicted to allocate a buffer entry for a new request

LPN 16

LPN 4

LPN 7

LPN 2 LRU

MRU LPN 10

LPN 16

LPN 4

LPN 7

Read LPN 10

Read LPN 10 Buffer entry 3

Buffer entries Buffer entries

LRU

MRU

Buffer entry 3

Buffer entry 2

Buffer entry 0

Buffer entry 1

Buffer entry 2

Buffer entry 1

Buffer entry 3

Buffer entry 0

Address Translator

Host request

Reformed request

43

■ Main Idea

● Every logical page is mapped to a corresponding physical page

■ Advantage

● Better performance over random write than block-level mapping

■ Disadvantage

● Huge amount of memory space requirement for the mapping table

Block 0

Block 1

Block 2

Block 3

a

data area spare area

ppn 0

ppn 1

ppn 2

ppn 15

flash memory

lpn: logical page number

ppn: physical page number

“write(5, a)”

lsn ppn

0 12

1 11

2 10

3 9

4 8

5 7

6 6

7 5

8 4

9 3

10 2

11 1

12 0

mapping table

ppn 3

.

.

.

lpn

44

■ Mapping tables are managed within a die

● Simple channel/way interleaving for sequential logical access

Channel 1

Die 1

LPN x···x01(2)

Die 3

LPN x···x11(2)

Way 0 Way 1

Channel 0

Die 0

LPN x···x00(2)

Die 2

LPN x···x10(2)

Way 1Way 0

LPN: Logical Page Number

Each LPN is deterministically mapped to specific die (ex. 2-channel, 2-way)

45

■ Why is garbage collection needed

● To reclaim new free blocks for future write requests

– Invalid data occupy storage space before GC

■ What is garbage collection

● Copies the valid data into a new free block and erases the original invalid data

● Basic operations involved in GC are the following

– 1. The victim blocks meeting the conditions are selected for erasure

– 2. The valid physical pages are copied into a free block

– 3. The selected physical blocks are erased

■ What is important in GC

● Victim block selection

– GC time depends on the status of victim block

46

■ GC Trigger

● Each GC is triggered independently of other dies

● GC is triggered when there is no free user block of each die

■ Blocks in GC

● One block per die is overprovisioned

● Single victim block is a target of GC

··· ···

Victim block Free block

··· ···

Free block Returned block

GC

Valid pages in victim block are copied to free block and the role of two blocks are swapped

Source file: pagemap.c

47

V2FCommand_ReadPageTrigger

▶ Read data of a flash page
▶ Store data to register of the flash die

V2FCommand_ReadPageTransfer

▶ Transfer data from a flash die to data buffer
▶ Inform bit error information to FTL

V2FCommand_ProgramPage

▶ Transfer data from data buffer to a flash die
▶ Program data to a flash page

V2FCommand_BlockErase

▶ Erase a flash block

V2FCommand_StatusCheck

▶ Check a previous command execution result

LLSCommand_RxDMA

▶ Transfer data from host system to data buffer

LLSCommand_TxDMA

▶ Transfer data from data buffer to host system

Commands for NVMe DMA engine

Commands for NAND flash controller

48

Command Priority

LLSCommand_RxDMA 0

LLSCommand_TxDMA 0

V2FCommand_StatusCheck 1

V2FCommand_ReadPageTrigger 2

V2FCommand_BlockErase 3

V2FCommand_ProgramPage 4

V2FCommand_ReadPageTransfer 5

■ Waiting commands are issued by scheduler

● Scheduler checks the state of flash memory controller and host interface controller

● Priority of flash commands enhance multi channel, way parallelism

Channel 0

Channel X

Way 0 Way 1 Way Y

Channel 1
Scheduler

Command queues

NVMe DMA

engine

NAND Flash

Controller

49

■ Firmware

● Supports

– Buffer management (LRU)

– Static page mapping

– Garbage collection (On-demand)

● Not supports

– Meta flush

– Wear leveling

● Notice

– I / O performance can be degraded when performing garbage collection

– The number of usable blocks is limited when the MLC NAND array is used in the 8-

channel 8-way structure

– The latest firmware in SLC mode accesses only LSB pages of MLC NAND

– Accessing to MSB pages may cause data errors not able to be corrected by ECC

50

■ The bit error rate increases if MSB pages of NAND flash are accessed

■ Increased bit errors might not be corrected by BCH error correction

engine in the current version of NAND flash controller

■ For now, the firmware runs in SLC mode in order to reduce the error

rate due to this reason

51

■ Currently, MLC to SLC mode transition command of NAND flash is not

supported

■ Accessing only LSB pages achieves similar characteristics to real SLC

NAND flash

Paired page address

LSB pages MSB pages

00h 02h

01h 04h

FDh FFh

…

52

■ PCIe-NVMe

● Supports

– Up to PCIe Gen2.0 x8 lanes

– Mendatary NVMe commands

– PRP data transfer mechanism and out-of-order data transfer in PRP list

– 1 namespce (can be extended by updating firmware)

– Up to 8 NVMe IO submission queues and 8 NVMe IO completion queues with 256 depths

– Up to 256 depths internal NVMe command table

– MSI interrupt with 8 interrupt vectors

– x86/x64 Ubuntu 14.04 and Windows 8.1

● Not supports

– 4 byte addressing yet (on debugging)

– Optional NVMe commands (can be supported by updating firmware)

– SGL data transfer mechanism

– Power management (can be supported by updating firmware)

– MSI-X interrupt

– Virtualization and sharing features

53

■ NAND flash controller

● Supports

– Channel can be configured up to 8

– Maximum bandwidth of NAND flash bus 200 MT

● Not supports

– Additional advanced commands are not supported (e.g. multi-plane operation)

55

■ Preparing development environment

● Host computer

● Platform board

● Development tools

■ Building materials

● FPGA bitstream

● Firmware

■ Operating Cosmos+ OpenSSD

● Bitstream and firmware download to the FPGA

● Host computer boot and SSD recognition check

● SSD format

● SSD performance evaluation and analysis

56

Mainboard BIOS Ver. Result Comment

Asrock Z77 Extream 6 P2.40 Working

ASUS H87-Pro 0806x64 Working

Gigabyte H97-Gaming 3 F5 Working

Gigabyte Z97X-UD5H F8 Working

F10c Not working 4-byte addressing problems in

Cosmos+ PCIe DMA engine

57

OS x86/x64 Result Comment

Windows 7 x64 Working with OFA driver

Windows 8.1 x64 Working

Windows 10 x64 Not working 4-byte addressing problems in C

osmos+ PCIe DMA engine

Ubuntu 14.04 LTS or

above

x64 Working Kernel version 3.13 or

above

58

■ Check jumper pins of the platform board

■ Insert NAND flash module(s)

■ Connect the external PCIe cable

■ Connect the USB cable for jtag

■ Connect the USB cable for UART

■ Connect the power cable

59

■ Make sure that jumper pins on board are set as default below

J79 J75 J76 J77 J78

60

■ Make sure that jumper pins on board are set as default below

J177

61

■ Make sure that jumper pins on board are set as default below

J30 J29 J28 J31

J27

62

■ Make sure that jumper pins on board are set as default below

J85 J87 J86 J88

J89

J188 J187

J184

J185

J186

J35

J36

63

■ Make sure that jumper pins on board are set as default below

J89 J80 J74

64

■ A single NAND flash module can support up to 4-channel configuration

● For prebuild 3.0.0, two NAND flash modules are required

● For predefined project 1.0.0, one NAND flash module is required

Push first

Push next

65

■ Hold external PCIe connector and push the cable in it

Hold here

Push

66

■ Make sure that the cable is fixed tightly

67

■ USBJTAG requires a micro-USB type B (male) to USB type A (male)

cable

USB type A
USB type micro B

Push

USBJTAG

68

■ USBUART requires a USB type A (male) to USB type A (male) cable

USB type A

Push

USBUART (Connector)

69

■ Connect the power cable to the 5.5 mm power connector

Push

70

■ Download materials

● Prebuilt FPGA bitstream

● Pre-defined Vivado project for manual FPGA bitstream generation

● Firmware source code

■ Install Xilinx Vivado Design Suite: System Edition 2014.4

● Xilinx Vivado 2014.4

● Xilinx SDK 2014.4

71

■ Go to the OpenSSD project site, and click “Resources”

http://www.openssd.io

72

■ Click “Source”

73

■ Click “Clone or download” -> “Download ZIP”

74

■ Materials include a prebuilt bitstream, a pre-defined project, and a

firmware source code

Prebuild-3.0.0

Pre-defined project-1.0.0

75

Bitstream Type Ver. Channel Way Bits / cell Capacity

Prebuild 3.0.0 8 8 SLC / MLC 1 TB / 2 TB

Predefined 1.0.0 2 8 SLC / MLC 256 GB / 512 GB

Firmware Type Ver. Channel Way Bits / cell Capacity

GreedyFTL

2.5.0

8 8 SLC 1 TB2.6.0

2.7.0

GreedyFTL 2.7.1 2 8 SLC 256 GB

76

■ Prebuild type

● A prebuilt bitstream is included, so you can skip bitstream generation steps

● Prebuild type is distributed as a hardware description file (.hdf) which consists of a

FPGA bitstream, bitstream information, and an initialization code for CPU in Zynq

FPGA

■ Pre-defined type

● bitstream is not included, so you should follow bitstream generation steps

● Pre-defined type is distributed as a vivado project file with register transfer level

(RTL) source codes of intellectual properties (IPs) such as NVMe controller

77

■ Make sure that Vivado is system edition and that “Software

Development Kit” and “Zynq-7000” are checked

78

1. Run synthesis

2. Run implementation

3. Generate bitstream

4. Export hardware

79

■ Open the predefined project included in “OpenSSD2_2Ch8Way-1.0.0”

80

■ Click “Run Synthesis”

81

■ Synthesis is running…

■ Select “Run Implementation” and click OK

● If you want to see the synthesized results, choose “Open Synthesized Design” or

“View Reports”

82

83

■ Implementation is running…

84

■ The following critical messages appear when implementation is

running, but you can ignore it

85

■ Check the status of synthesis and implementation

86

■ Click “Generate Bitstream”

87

■ Generate bitstream is running…

88

■ If you want to see the implemented design, select open implemented

design and click the OK button

89

■ Go to File -> Export and click “Export Hardware”

90

■ Select the “Include bitstream” and click OK

91

■ Go to File -> Launch SDK

92

■ Click the OK button

93

■ Then, SDK is launched

94

■ As shown below, exported hardware platform is set as target hardware

95

1. Create a new application project

2. Add source codes

3. Build firmware source codes

96

■ Go to File -> New -> Application Project

97

■ Fill in the project name and click “Next”

98

■ Select an empty application and finish this template wizard

GreedyFTL-2.7.1

99

■ Copy GreedyFTL source files to “src” folder in project explorer

Copy

100

■ If everything goes well, the automatic build process should finish

successfully

101

■ Click “Build All” to make both debug and release executables

102

1. Create a workspace directory and a new application project

2. Set a hardware platform

3. Add source codes

4. Build firmware source codes

103

■ Launch Xilinx SDK and designate the workspace

104

■ Go to File -> New -> Application Project

105

■ Press “New” to register the hardware description file (HDF)

106

■ Name the hardware project and specify the path of the HDF

107

■ Name the application project and finish this project wizard

108

■ Copy GreedyFTL source files to “src” folder in project explorer

Copy

GreedyFTL-2.7.0

109

■ If everything goes well, the automatic build process should finish

successfully

110

■ Click “Build All” to make both debug and release executables

111

1. Power on the platform board

2. Configure UART

3. Program FPGA

4. Execute firmware

112

■ Before you power on the board, make sure that your host computer is

powered off

Slide

113

■ In SDK, go to Terminal -> New Terminal Connection as shown below

114

■ Set “Connection Type” and “Baud Rate” to serial and 115200,

respectively

115

■ If then, UART is connected as shown below

116

■ Click “Xilinx Tools” -> click “Program FPGA”

117

■ Click “Program” to program FPGA

118

■ Hang on a second

119

■ Check FPGA programming done successfully

120

■ Right click on the application project -> “Run As” -> click “1 Launch

on Hardware (GDB)”

121

■ Click the firmware to execute -> click “OK” -> wait UART message

122

■ Press ‘n’ to maintain the bad block table

123

■ Choose whether remake the bad block table in FTL initialization step

● If you want to remake the bad block table, press “X” on UART terminal

– Bad block table format of greedy FTL v2.7.0 is different from the previous versions

– Damaged bad block table can be recovered

“X” erases all blocks including a metadata block

Others maintain the bad block table

124

■ Bad blocks are detected in FTL initialization step

Firmware

Start

FTL

Initialization

Host Request

Fetch

Host Request

Processing

Bad Block Management

Way 0

Metadata Block

Bad Block Table

…

Way Y

Metadata Block

…
…

Channel 0

Read a bad block table

Update mapping data

Bad block table

does not exist

“Block” number means mapped block number

“phyBlock” number means physical block number

Read a bad mark of all blocks

Distinguish bad block

Save a bad block table

125

■ Turn on the host PC when the firmware reset is done

126

■ NVMe SSD initialization steps are on going

127

1. Check device recognition

2. Create a partition

3. Check the created partition

4. Format the partition

5. Create a mount point

6. Mount the partition

7. Check the mounted partition

128

■ Click the pointed icon

129

■ Click the terminal icon

130

■ Types “lspci” -> press ENTER -> check “Non-Volatile memory controlle

r: Xilinx Corporation Device 7028” on the PCI device list

131

■ Types “ls /dev” -> press ENTER -> check “nvme0nxxxx” on the device

list

132

■ Type “sudo fdisk /dev/nvme0nxxxx”, press ENTER -> type your passw

ord, press ENTER -> type “n”, press ENTER -> type “p”, press ENTER

-> type “1”, press ENTER -> type “4096”, press ENTER

133

■ Types “ls /dev” -> press ENTER -> check “nvme0nxxxxp1” on the devi

ce list

134

■ Type “mkfs -t ext4 / dev/nvme0nxxxxp1”, press ENTER

135

■ Type “sudo mkdir /media/nvme”, press ENTER

136

■ Type “sudo mount /dev/nvme0nxxxxp1 /media/nvme”, press ENTER

137

■ Type “lsblk”, press ENTER -> check the mounted partition on the bloc

k device list

138

■ Type “df -h”, press ENTER -> check the mounted partition on the stora

ge list

139

1. Check device recognition

2. Create a partition

3. Format the partition

140

■ This PC → click left mouse button → click “Properties”

141

■ System → click “Device Manager”

142

■ Disk drives → double-click “NVMe Cosmos+ OpenSSD”

143

■ Control panel → click “Administrative Tools”

144

■ Administrative tools → double-click “Computer Management”

145

■ Computer management → click “Disk Management” → click “OK” to

confirm disk initialization

146

■ Click right mouse button on “Disk 2” which was shown in 3rd step →

click “Properties”

147

■ Make sure that the “Disk 2” is Cosmos+ OpenSSD before you proceed

to the next step

148

■ Click right mouse button on the right part of “Disk 2” → click “New

Simple Volume”

149

■ Click “Next”

150

■ Click “Next”

151

■ Select desired drive letter → Click “Next”

152

■ Type desired volume label → Click “Next”

153

■ Click “Finish”

154

■ Formatting is now finished

155

■ Now you can find the formatted Cosmos+ OpenSSD at “This PC”

156

1. Install benchmark application (Iometer)

2. Disconnect workers except one worker

3. Generate a access specification

4. Set the sufficient number of outstanding I/Os

5. Assign a access specification

6. Run an evaluation

7. Check evaluation results

157

■ Iometer 1.1.0 (http://www.iometer.org/doc/downloads.html)

● Cosmos+ OpenSSD is recognized as NVMe storage device

http://www.iometer.org/doc/downloads.html

158

■ Avoid Workers having a same access specifications

● Workers can access the same logical address almost the same time

– Increase the data buffer hit ratio

● Performance can be measured higher than real performance

159

■ User can define a access specification

160

■ Select a desired access specification and click “Add” button

161

■ X channel – Y way flash array needs “X * Y” outstanding flash requests

at least for utilizing multi channel/way parallelism

● In case of a Cosmos+ OpenSSD configuration (8 channel – 8 way, 16KB page size),

“128KB sequential write” access specification needs 8 outstanding I/Os at least

● Recommend the environment generating 2 * X * Y outstanding flash requests

16

64 (128KB/16KB * 8) outstanding flash requests

162

■ Set the update frequency and click “Run” button

Run

163

■ “Results display” tab shows the performance evaluation results

● IOPs, throughput, average/maximum response time

164

■ Perform pre-fill process before the read performance evaluation

● There are no mapping information for unwritten data

■ Set the number of outstanding I/Os equal or less than 256

● Unknown problem of host interface

■ Set the write request size equal or larger than the page size

● Read-modify-write process can degrade the performance

– In case of “4KB random write”, IOPs can be decreased as the experiment progresses

165

■ Maximum throughput/channel ≒ 173 MB/s

● 100Mhz DDR flash bus (bit width: 8) → 200MB/s

● 16,384 + 1,664(spare) byte page → 90% (16,384/18048) of 200MB/s = 181MB/s

● Overhead of flash memory controller → 173 MB/s

■ Measured throughput/channel of 8channel-8way configuration

● Sequential read: 99% of maximum throughput

● Sequential write: 45~90% of maximum throughput

SLC

MLC

(MB/s) (MB/s)

128KB sequential read 128KB sequential write

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400
SLC

MLC

166

■ Maximum 4KB IOPs/channel ≒ 10812 IOPs

● Page mapping → a page is accessed in order to access 4KB data

● 173MB/s(Maximum throughput/channel) ÷ 16KB (page size) = 10812 IOPs

■ Measured throughput/channel

● 1channel-8way configuration

– Random 4KB read: 96% of maximum 4KB IOPs

– Random 4KB write: 38~88% of maximum 4KB IOPs

● 8channel-8way configuration

– SW-based scheduling has a larger latency in many channel/way configuration

– Scheduling latency can increase the idle time of hardware controllers

SLC

MLC

(IOPs) (IOPs)

4KB random read 4KB random write

(w/o read-modify-write)

0

10000

20000

30000

40000

50000

60000

70000

80000

0

10000

20000

30000

40000

50000

60000

70000
SLC

MLC

167

■ Performance degradation by on-demand garbage collection

● After all available blocks are used, garbage collection is triggered steadily

● Effect of performance degradation varies depending on copy operation overhead

– Copy operation overhead depends on the number of valid page belong to victim blocks

1190

1200

1210

1220

1230

1240

1250

1260

0 5 10 15 20 25 30

- 3.6 %

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

(MB/s) (MB/s)

Victim blocks with no valid pages

in SLC 8channel-8way configuration

Victim blocks with valid pages (half of total page)

in SLC 8channel-8way configuration

- 67.4 %

